CHAPTER 7 FREESTANDING PRACTICE QUESTIONS

- 1. How far apart are two charges ($A = 10 \mu C$ and $B = 12 \mu C$) if the electric potential measured at point C midway between them is 10 V?
- A) 2×10^{-5} m
- B) 2×10^5 m
- C) 4×10^{-4} m
- D) 4×10^4 m
- 2. Two charges (+q and -q) each with mass $9.11 \times 10^{-31} \text{ kg}$ are placed 0.5 m apart and the gravitational force (F_{G}) and electric force (F_{E}) are measured. If the ratio of $F_{\text{G}}/F_{\text{E}}$ is -1.12×10^{-77} , what is the new ratio if the distance between the charges is halved?
- A) -2.24×10^{-77}
- B) -1.12×10^{-77}
- C) -5.6×10^{-78}
- D) -2.8×10^{-78}
- 3. Two equally positive charges are r distance apart. If the amount of charge on A is doubled and the distance between the charges is doubled, what is the ratio of new electric force to old electric force?
- A) 1/4
- B) 1/2
- C) 2
- D) 4
- **4.** The amount of work required to move a charge in an electric field depends:
- A) only on the change in potential and not the path traveled.
- B) on both the change in potential and the path traveled.
- C) only on the path traveled and not the change in potential.
- D) on neither the path traveled nor the change in potential.

- 5. Which of the following pairs of electric forces form an action-reaction pair?
 - I. Two positive charges, of different masses, placed at a distance *d* apart.
 - II. Two negative charges, of equal masses, placed at a distance d apart.
 - III. One positive charge and one negative charge, of equal masses, placed at a distance d apart.
- A) I and II only
- B) II and III only
- C) III only
- D) I, II and III
- 6. A hollow metal sphere of radius 0.5 m has a net charge of 2.0 × 10⁻⁶ C. A solid metal sphere of radius 0.5 m has a net charge of 4.0 × 10⁻⁶ C. The centers of the spheres are placed a distance 2 m apart. Compared to the electric field at the center of the hollow sphere, the electric field at the center of the solid sphere is:
- A) twice the magnitude.
- B) four times the magnitude.
- C) half the magnitude.
- D) equal in magnitude.
- 7. Starting from rest, a sphere of mass 2 kg and charge -0.1 C slides across a frictionless horizontal plane through a potential difference of 220 V. Determine the instantaneous velocity of the sphere the moment it has rolled through this potential.
- A) 4.7 m/s
- B) 5.1 m/s
- C) 5.5 m/s
- D) 6.1 m/s