High-Yield Problems

Key Concepts

Chapter 7

Magnetic field

Magnetic force

Alpha particles

Takeaways

From the force relationship above, it can be deduced that the units of magnetic field are $\frac{N\cdot s}{C\cdot m}$ or $\frac{N}{A\cdot m}$. This unit is named the tesla. It is a large unit, and the smaller unit, gauss, is used for small fields like the earth's magnetic field. A tesla is 10,000 gauss.

Things to Watch Out For

The force is perpendicular to both the velocity (v) of the charge (q) and the magnetic field (B). The magnetic force on a stationary charge or a charge moving parallel to the magnetic field is zero. The direction of the force is given by the right-hand rule.

Magnetic Force

The speed of an alpha particle is 4.5×10^4 m/s, and the magnitude of the magnetic force is 7.5×10^{-15} N. What is the magnitude of the magnetic field if the particle is traveling perpendicular to the field? ($e = 1.6 \times 10^{-19}$ C)

1) Determine the charge of the object that the force is acting on.

$$2 \times 1.6 \times 10^{-19} \text{ C} = 3.2 \times 10^{-19} \text{ C}$$

The magnetic field is acting on an alpha particle. An alpha particle has two protons and two neutrons. Because the charge of one proton is 1.6×10^{-19} C, multiply that by 2.

Remember: The sign of the charge will depend on the particle. If you have an electron, the charge is negative. If you are dealing with a proton, the charge is positive.

2) Set up the force equation.

$$F = qvB \sin \theta$$

In this formula, F is the magnitude of the magnetic force on the moving charge, q is the magnitude of the charge, v is the magnitude of the velocity of the moving charge, B is the magnitude of the magnetic field, and θ is the angle between the magnetic field and the velocity of the charge. The question states that the particle is moving perpendicular to the field, so θ is 90°.

High-Yield Problems

3) Solve for the magnitude of the magnetic field.

Solve for B in the equation from step 2 and plug in values.

$$B = \frac{F}{qV}$$

$$= \frac{7.5 \times 10^{-15} \text{ N}}{(3.2 \times 10^{-19} \text{ C})(4.5 \times 10^4 \text{ m/s})}$$

$$= 0.521 \text{ T}$$

Similar Questions

- 1) A beam of electrons moves at right angles to a 0.60 T field. The electrons have a velocity of 2.5×10^7 m/s. What force acts on the electrons? What force acts if the beam of electrons moves at an angle of 45° to the field?
- 2) What is the force felt from a magnetic field on an electron where the speed of an electron is 5×10^3 m/s, the magnitude of the magnetic field is 1.5 T, and the particle travels at a 30° angle to the field?
- 3) A proton moves at right angles to a 0.003 T field directed out of the page. The proton moves from right to left with a speed of 5×10^6 m/s. What is the magnitude and direction of the force that the proton experiences?